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     Some New Tables for Upper Probability Points of the Largest Root of a 
               Determinantal Equation with Seven and Eight Roots  
                            
                 William W. Chen, Internal Revenue Service 
                
We revisit the Fisher-Girshick-Hsu-
Roy distribution (1939), which has 
interested statisticians for more 
than six decades. Instead of using 
K.C.S. Pillai’s method of 
neglecting higher order terms of 
the cumulative distribution 
function (C.D.F.) of the largest 
root to approximate the percentage 
points, we simply keep the whole 
C.D.F. and apply its natural non-
decreasing property to calculate 
the exact probabilities. At the 
duplicated percentage points, we 
found our computed percentage 
points to be consistent with 
existing tables. However, our 
tabulations have greatly extended 
the existing tables. 
 
In 2002 [1], we were concerned with 
the distribution of the largest 
characteristic roots in 
multivariate analysis when there 
are two to six roots. Now, we will 
extend the size to seven and eight 
roots.Fisher-Girshick-Hsu-Roy(1939) 
discuss this in detail and present 
the joint probability density 
function in general. This well-
known distribution depends on the 
number of characteristic roots and 
two parameters m and n, which are 
defined differently for various 
situations, as described by Pillai 
(1955). The upper percentage points 
of the distribution are commonly 
used in three different 
multivariate hypothesis tests: 
tests of equality of the variance-
covariance matrices of two p-
variate normal populations, tests 
of equality of the p-dimensional 
mean vectors for k p-variate normal 
populations, and tests of 
independence between a p-set and a 
q-set of variates in a (p+q)-
variate normal population. When the 
null hypotheses are true, these 
three proposed tests depend only on 
the characteristic roots of 
matrices using observed samples. 

The problem can be stated as 
follows: using a random sample from 
the multivariate normal population, 
we will compute the characteristic 
roots from a sum of product 
matrices of this sample. We will 
then compare the largest 
characteristic root of the matrices 
with the percentage points 
tabulated in this paper to 
determine whether or not the null 
hypothesis is rejected at a certain 
probability confidence. 
   
There are already many published 
tables that focus on upper 
percentage point tabulations or 
chart the various sizes of roots. 
The best-known contributor in this 
area is Pillai, who gave general 
rules for finding the C.D.F. of the 
largest root and tabulated upper 
percentage points of 95% and 99% 
for various sizes of roots. Other 
contributors, including Nanda 
(1948, 1951), Foster and Rees 
(1957, 1958), and Heck (1960) will 
be discussed in more detail in 
section 2. Section 3 contains the 
joint distribution of s non-null 
characteristic roots of a matrix in 
general form and the C.D.F. of the 
seven and eight largest 
characteristic roots. The algorithm 
used to create the tables in this 
paper is the same as in reference 
[2], and we will not repeat it.  
Also, we will ignore the discussion 
of precision of the results. 
 

   Cumulative Function and Historical 
   Work 

The joint distribution of s non-
null characteristic roots of a 
matrix in multivariate distribution 
was first given by Fisher-Girshick-
Hsu-Roy (1939) and can be expressed 
in the form of (3.1). We further 
extended the distribution of the 
largest characteristic root to 
seven and eight roots.  Even though 
the form of the joint density 
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function is known, it is not easy 
to write out the C.D.F. of the 
largest characteristic root to 
seven roots. To solve this problem, 
two methods can be used to find the 
C.D.F. more easily. Pillai (1965) 
suggests that the C.D.F. of the 
largest characteristic root could 
be presented in determinant form of 
incomplete beta functions. Since 
the numerical integration of each 
of the s factorial multiple 
integrals when the determinant is 
expanded is difficult, he suggests 
an alternative reduction formula 
that gives exact expressions for 
the C.D.F. of the largest root in 
terms of incomplete beta functions 
or functions of incomplete beta 
functions for various values of s.  
An alternative method suggested by 
Nanda (1948) yields the same 
results. He started with the 
Vandermonde determinant and 
expanded it in minors of a row, 
then repeated applied integration 
by part to find the C.D.F. of the 
largest characteristic root. In 
this paper, we use the Pillai 
notation and present the case with 
seven roots in equation (3.2). 
Following this C.D.F. and the 
algorithm previously used, we 
tabulate the upper percentage 
points. 
 
Here, it is useful to review some 
of the published tables and reasons 
to extend the tables. Pillai 
(1956a, 1959) published tables that 
focus only on two percentage 
points: 95% and 99% for s =2,6, m = 
0(1)4, and n varying from 5 to 
1000. Foster and Rees (1957) 
tabulated the upper percentage 
points 80%, 85%, 90%, 95%, and 99% 
of the largest root for s=2, m=-
0.5, 0(1)9, n=1(1)19 (5)49,59,79. 
Foster(1957, 1958) further extended 
these tables for values of s=3 and 
4. Heck(1960) has given some charts 
of upper 95%, 97.5%, and 99% points 
for s=2(1)5, m=-0.5, 0(1)10, and n 
greater than 4. These table values 
can be applied to our statistical 
analysis with some standard 
textbooks as references. For 

example, recently, Rencher included 
the percentage point 0.950 in three 
textbooks [18],[19]). 
  
Without a modern computer, it is 
difficult and tedious to compute 
the whole C.D.F.(3.2) at each 
percentage point. Therefore, 
deleting higher order terms and 
retaining a few lower order terms 
to approximate the roots is a 
reasonable solution. However, this 
approach involves intolerable error 
at lower percentage points, such as 
80%,82.5%,85%,87.5%, 90%, or 92.5%. 
These percentage points are usually 
ignored due to the difficulty of 
their computation, and not due to 
their lack of use. Traditional 
methods treat intermediate 
percentage points by interpolation, 
but without, for example, 85% or 
90% percentage points, it is 
difficult to interpolate 87.5%. In 
recent years, computers have 
gradually matured in memory, speed, 
and flexibility in usage, which has 
greatly changed the methods by 
which we study statistics. In this 
study, we use one of the most basic 
properties of C.D.F. and revisit 
this most important distribution. 
As many percentage points as are 
needed in one computer run are 
included: these are 0.80, 0.825, 
0.850, 0.875, 0.890, 0.900, 
0.910(0.005), 0.995. Different 
authors have selected different m 
and n parameter values, but we 
selected these parameters such that 
all existing table values are 
included. For the parameters 
m=0(1)10 and 
n=3(1)20(2)30(5)80(10),150,200 
(100)1000, our table provides the 
percentage points and probabilities 
while avoiding the interpolation 
problem. 
 
The Distribution Function of Seven 
Characteristic Roots  

Suppose { } { }*
ij

*
ij x  xand  xx ==  are two p-

variate random matrices with 
21 n  and n  the degree of freedom, 

respectively. Assume the two 
multivariate populations have the 
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same covariance matrix: for 
example,  ./nxxS and n/xxS 2

*T*
21

T
1 ==  

When the null hypothesis is true, 
both 21 S  and S  are independent 
estimators of the unknown but equal 
covariance matrices. The joint 
distribution of the roots of the 
determinantal equation 

2211 SnB  and SnA    where0)BA( A ===+θ−  
has been given by Fisher-Girshick-
Hsu-Roy(1939) and can be written as 
: 
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and the parameters m and n are 
defined differently for various 
situations as described by Pillai 
(1955, pp. 118). Following Pillai’s 
method, the cumulative distribution 
function of the largest 
characteristic root for seven and 
eight is given below: 

:isroot  sticcharacterilargest   theof C.D.F.  the7,sWhen =
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                         Upper percentage points of  .900 of theta(p,m,n), 
                       the largest eigenvalue of |B-theta(W+B)|=0,when s=7 
 
                                       m 
 
     n         0       1       2       3       4       5       6       7       8       9       10 
 
     3      .9040   .9188   .9295   .9378   .9442   .9495   .9538   .9576   .9608   .9630   .9644 
     4      .8650   .8842   .8986   .9097   .9186   .9259   .9320   .9371   .9415   .9453   .9490 
     5      .8266   .8497   .8671   .8809   .8920   .9012   .9090   .9156   .9212   .9261   .9307 
     6      .7899   .8160   .8362   .8522   .8653   .8763   .8855   .8935   .9004   .9064   .9116 
     7      .7552   .7838   .8062   .8242   .8391   .8515   .8622   .8714   .8794   .8865   .8927 
     8      .7226   .7533   .7774   .7971   .8135   .8273   .8392   .8495   .8586   .8665   .8737 
     9      .6923   .7244   .7501   .7711   .7888   .8038   .8168   .8281   .8380   .8469   .8548 
    10      .6639   .6973   .7241   .7463   .7650   .7811   .7950   .8072   .8180   .8276   .8363 
    11      .6376   .6717   .6995   .7226   .7423   .7592   .7740   .7869   .7985   .8088   .8181 
    12      .6130   .6478   .6763   .7002   .7206   .7382   .7537   .7674   .7796   .7905   .8004 
    13      .5901   .6253   .6543   .6788   .6999   .7182   .7342   .7485   .7613   .7727   .7832 
    14      .5687   .6042   .6336   .6586   .6801   .6989   .7155   .7303   .7436   .7556   .7664 
    15      .5487   .5843   .6140   .6394   .6613   .6806   .6976   .7128   .7266   .7390   .7503 
    16      .5300   .5656   .5955   .6211   .6434   .6630   .6804   .6960   .7101   .7229   .7346 
    17      .5124   .5480   .5780   .6038   .6263   .6462   .6640   .6799   .6943   .7074   .7194 
    18      .4959   .5314   .5614   .5873   .6100   .6302   .6482   .6644   .6791   .6925   .7048 
    19      .4805   .5157   .5457   .5717   .5945   .6148   .6330   .6495   .6644   .6781   .6906 
    20      .4659   .5009   .5308   .5568   .5797   .6001   .6185   .6351   .6503   .6642   .6769 
    22      .4391   .4736   .5032   .5291   .5520   .5726   .5912   .6081   .6236   .6378   .6509 
    24      .4152   .4490   .4782   .5039   .5268   .5474   .5661   .5832   .5988   .6133   .6267 
    26      .3937   .4267   .4554   .4809   .5036   .5242   .5429   .5600   .5758   .5904   .6040 
    28      .3743   .4065   .4347   .4598   .4823   .5027   .5214   .5386   .5544   .5691   .5828 
    30      .3567   .3881   .4158   .4404   .4627   .4829   .5015   .5186   .5344   .5492   .5629 
    35      .3190   .3486   .3748   .3984   .4198   .4394   .4576   .4744   .4901   .5047   .5184 
    40      .2885   .3162   .3410   .3635   .3840   .4030   .4205   .4369   .4523   .4667   .4802 
    45      .2632   .2894   .3128   .3342   .3538   .3720   .3889   .4048   .4197   .4338   .4471 
    50      .2420   .2666   .2888   .3092   .3279   .3454   .3617   .3770   .3915   .4052   .4181 
    55      .2240   .2472   .2683   .2876   .3055   .3223   .3380   .3528   .3668   .3800   .3926 
    60      .2084   .2304   .2504   .2688   .2860   .3020   .3171   .3314   .3449   .3578   .3700 
    65      .1949   .2157   .2348   .2524   .2688   .2842   .2987   .3124   .3255   .3379   .3498 
    70      .1830   .2028   .2210   .2378   .2535   .2683   .2822   .2955   .3081   .3202   .3317 
    75      .1725   .1914   .2087   .2248   .2399   .2541   .2675   .2803   .2925   .3042   .3154 
    80      .1631   .1811   .1977   .2131   .2276   .2413   .2542   .2666   .2784   .2897   .3005 
    90      .1470   .1636   .1788   .1931   .2065   .2192   .2313   .2428   .2538   .2645   .2747 
   100      .1339   .1492   .1633   .1765   .1889   .2008   .2121   .2229   .2333   .2432   .2529 
   110      .1229   .1371   .1502   .1625   .1741   .1852   .1958   .2060   .2158   .2252   .2343 
   120      .1136   .1268   .1390   .1506   .1615   .1719   .1819   .1915   .2007   .2096   .2182 
   130      .1056   .1179   .1294   .1403   .1506   .1604   .1698   .1788   .1876   .1960   .2042 
   140      .0986   .1102   .1211   .1313   .1410   .1503   .1592   .1678   .1761   .1841   .1919 
   150      .0925   .1035   .1137   .1234   .1326   .1414   .1498   .1580   .1659   .1735   .1810 
   200      .0706   .0792   .0872   .0948   .1021   .1091   .1158   .1223   .1287   .1348   .1408 
   300      .0480   .0539   .0595   .0648   .0699   .0749   .0796   .0843   .0888   .0932   .0975 
   400      .0363   .0409   .0451   .0492   .0532   .0570   .0607   .0643   .0678   .0712   .0746 
   500      .0292   .0329   .0364   .0397   .0429   .0460   .0490   .0519   .0548   .0576   .0604 
   600      .0244   .0275   .0305   .0332   .0359   .0386   .0411   .0436   .0460   .0484   .0507 
   700      .0210   .0237   .0262   .0286   .0309   .0332   .0354   .0375   .0396   .0417   .0437 
   800      .0184   .0208   .0230   .0251   .0271   .0291   .0311   .0330   .0348   .0367   .0384 
   900      .0164   .0185   .0205   .0224   .0242   .0260   .0277   .0294   .0311   .0327   .0343 
  1000      .0148   .0167   .0184   .0202   .0218   .0234   .0250   .0265   .0280   .0295   .0309 
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               Upper percentage points of 0.900 of theta(p,m,n), 
             the largest eigenvalue of |B-theta(W+B)|=0,when s=8 
 
                                     m 
 
     n        0      1      2      3      4      5      6      7      8      9 
 
     5   0.8517 0.8702 0.8845 0.8959 0.9052 0.9124 0.9225 0.9563 0.9570 0.9882 
     6   0.8183 0.8396 0.8563 0.8698 0.8808 0.8897 0.8978 0.9014 0.9096 0.9727 
     7   0.7862 0.8099 0.8286 0.8439 0.8566 0.8667 0.8781 0.8788 0.9019 0.9532 
     8   0.7558 0.7814 0.8019 0.8187 0.8328 0.8446 0.8559 0.8763 0.8994 0.9279 
     9   0.7270 0.7542 0.7761 0.7943 0.8096 0.8226 0.8347 0.8428 0.8664 0.8882 
    10   0.7000 0.7283 0.7515 0.7708 0.7872 0.8012 0.8139 0.8237 0.8385 0.8695 
    11   0.6744 0.7038 0.7280 0.7482 0.7656 0.7806 0.7937 0.8070 0.8163 0.8390 
    12   0.6505 0.6807 0.7056 0.7267 0.7448 0.7606 0.7746 0.7874 0.8013 0.8057 
    13   0.6280 0.6587 0.6843 0.7061 0.7248 0.7412 0.7555 0.7688 0.7826 0.7865 
    14   0.6069 0.6381 0.6641 0.6864 0.7057 0.7227 0.7376 0.7513 0.7665 0.7798 
    15   0.5870 0.6185 0.6449 0.6676 0.6874 0.7048 0.7202 0.7351 0.7468 0.7731 
    16   0.5683 0.5999 0.6267 0.6498 0.6699 0.6877 0.7036 0.7182 0.7341 0.7421 
    17   0.5507 0.5824 0.6094 0.6327 0.6532 0.6713 0.6874 0.7028 0.7153 0.7347 
    18   0.5340 0.5658 0.5929 0.6164 0.6371 0.6555 0.6720 0.6866 0.6981 0.7066 
    19   0.5183 0.5500 0.5772 0.6009 0.6218 0.6404 0.6572 0.6719 0.6841 0.6935 
    20   0.5035 0.5351 0.5623 0.5861 0.6071 0.6259 0.6428 0.6579 0.6713 0.6799 
    22   0.4761 0.5074 0.5345 0.5583 0.5796 0.5986 0.6159 0.6313 0.6450 0.6560 
    24   0.4514 0.4823 0.5092 0.5330 0.5542 0.5734 0.5908 0.6067 0.6205 0.6319 
    26   0.4291 0.4595 0.4861 0.5097 0.5309 0.5501 0.5676 0.5837 0.5982 0.6101 
    28   0.4089 0.4387 0.4649 0.4883 0.5094 0.5286 0.5461 0.5622 0.5768 0.5897 
    30   0.3904 0.4196 0.4454 0.4686 0.4895 0.5085 0.5260 0.5422 0.5569 0.5699 
    35   0.3507 0.3784 0.4031 0.4254 0.4457 0.4643 0.4816 0.4975 0.5123 0.5258 
    40   0.3182 0.3444 0.3679 0.3893 0.4089 0.4270 0.4438 0.4595 0.4741 0.4874 
    45   0.2912 0.3160 0.3383 0.3588 0.3776 0.3951 0.4114 0.4267 0.4410 0.4542 
    50   0.2684 0.2918 0.3131 0.3327 0.3507 0.3676 0.3833 0.3982 0.4121 0.4250 
    55   0.2488 0.2711 0.2913 0.3100 0.3274 0.3436 0.3588 0.3731 0.3866 0.3994 
    60   0.2319 0.2531 0.2724 0.2903 0.3069 0.3225 0.3371 0.3510 0.3641 0.3766 
    65   0.2172 0.2373 0.2557 0.2728 0.2888 0.3038 0.3179 0.3313 0.3441 0.3562 
    70   0.2042 0.2234 0.2410 0.2574 0.2727 0.2871 0.3008 0.3137 0.3261 0.3378 
    75   0.1926 0.2110 0.2278 0.2435 0.2583 0.2722 0.2854 0.2979 0.3098 0.3212 
    80   0.1824 0.1999 0.2160 0.2311 0.2453 0.2587 0.2715 0.2836 0.2952 0.3062 
    90   0.1647 0.1808 0.1958 0.2097 0.2229 0.2354 0.2473 0.2587 0.2696 0.2800 
   100   0.1502 0.1651 0.1790 0.1920 0.2043 0.2159 0.2271 0.2378 0.2480 0.2578 
   110   0.1380 0.1519 0.1648 0.1770 0.1885 0.1994 0.2099 0.2200 0.2296 0.2389 
   120   0.1277 0.1406 0.1527 0.1641 0.1749 0.1852 0.1951 0.2046 0.2138 0.2226 
   130   0.1188 0.1309 0.1423 0.1530 0.1632 0.1730 0.1823 0.1913 0.2000 0.2084 
   140   0.1110 0.1225 0.1332 0.1433 0.1530 0.1622 0.1711 0.1796 0.1879 0.1958 
   150   0.1042 0.1150 0.1252 0.1348 0.1439 0.1527 0.1611 0.1692 0.1771 0.1847 
   200   0.0798 0.0882 0.0962 0.1038 0.1111 0.1181 0.1248 0.1313 0.1377 0.1438 
   300   0.0543 0.0602 0.0658 0.0711 0.0762 0.0812 0.0860 0.0907 0.0952 0.0997 
   400   0.0412 0.0457 0.0500 0.0541 0.0580 0.0619 0.0656 0.0692 0.0728 0.0762 
   500   0.0331 0.0368 0.0403 0.0436 0.0469 0.0500 0.0530 0.0560 0.0589 0.0618 
   600   0.0277 0.0308 0.0338 0.0366 0.0393 0.0419 0.0445 0.0470 0.0495 0.0519 
   700   0.0238 0.0265 0.0290 0.0315 0.0338 0.0361 0.0383 0.0405 0.0426 0.0447 
   800   0.0209 0.0232 0.0255 0.0276 0.0297 0.0317 0.0337 0.0356 0.0375 0.0393 
   900   0.0186 0.0207 0.0227 0.0246 0.0265 0.0283 0.0300 0.0317 0.0334 0.0351 
  1000   0.0168 0.0187 0.0205 0.0222 0.0239 0.0255 0.0271 0.0286 0.0301 0.0316 


