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Comparing Strategies To Estimate a Measure 
of Heteroscedasticity

Kimberly Henry, Internal Revenue Service, and  
Richard Valliant, University of Michigan

E stimating totals is often a survey sampling objec-
tive. With a model-based approach, one factor 
that can affect the variance and bias of estimated 

totals is the superpopulation structure. We consider cases 
where a dependent variable’s variance is proportional to 
some power of the independent variable.  Various strate-
gies that are conceivable in this case include: (1) selection 
of a pilot sample to make preliminary structural param-
eter estimates, (2) selection of a main sample based on 
either pilot results or educated guesses about population 
parameters, and (3) use of either a model-based or design-
based estimator of the total. For various sample designs, 
sizes, and estimators, alternative strategies for estimating 
values of that variance power are compared for simulated 
population data.  The strategies’ effects on estimates of 
totals and their variances are then evaluated.  

This paper is organized into six sections. After the 
introduction, the second section contains descriptions of 
our superpopulation model and generated populations.    
The third section includes our simulation setup details, 
while results are discussed in the fourth section. Conclu-
sions, limitations, and future considerations are in the 
fifth section and references in the sixth section.

	Superpopulation Model and 
Generated Populations

Model Theory

Given a study variable of interest     and an auxiliary 
variable     , we consider a superpopulation with the fol-
lowing structure:

  (2.1)

The      ’s are assumed to be known for each unit i in 
the finite population. The exponent        in model (2.1)’s 
conditional variance has been referred to as a measure 
of heteroscedasticity (Foreman, 1995), or coefficient 
of heteroscedasticity (Brewer, 2002).  This parameter 
is of interest since a reasonable      estimate produces 

nearly optimal sample designs and estimators of totals 
and their variances (Theorem 4.2.1, Valliant, Dorfman, 
and Royall, 2000).  

Applications of models like (2.1) include companies 
using cost segregation to report depreciable assets on 
their Internal Revenue Service Tax Form 1120 (e.g., 
Allen and Foster, 2005 and Strobel, 2002) and compar-
ing inventory data values versus actual values (e.g., 
Roshwalb, 1987 and Godfrey et al., 1984).

Given generated population data, our goal is to use 
various strategies to draw samples and estimate        from 
them, then examine the impact of these strategies on the 
estimation of totals and their variances.

Generated Populations

We created two unstratified versions of the popula-
tion described in Hansen et al. (1983, denoted HMT here-
after), since it follows model (2.1).  We chose       equal 
to 3/4 and 2 for populations of 10,000 units.  Figures 
1 and 2 show the population         for each generated 
population (note a difference in Y-scales):

                                       

   

The first population has a relatively strong depen-
dence between    and    , while the second one has a 
much weaker relationship. Note that these populations 
have a small non-zero intercept, which resulted in some 
model-based estimators being biased in the earlier HMT 
study.
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         Figure 1: Generated Populations 
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The first population has a relatively strong dependence 
between y  and x , while the second one has a much 
weaker relationship. Note that these populations have a 
small non-zero intercept, which resulted in some model-
based estimators being biased in the earlier HMT study. 

3. Simulation Setup 

This section describes the details of our simulation study, 
including working models, sample designs, simulation 
strategies, and the method of estimating .

3.1: Models 
Using Valliant et. al’s (2000) notation, we based 
estimators of totals on the following two working models 

):1,1( xM  (3.1) 
):,( 2/ xxxM  (3.2) 
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Sample Designs

For each unit       in the population, we consider four 
without replacement (wor) sample designs:

(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with prob-

abilities of selection proportional to a measure of 
size (MOS).

(3) ppstrat: strata are formed in the population by cumu-
lating an MOS and forming strata with equal total 
size. An  srswor of one unit is selected from each 
stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor 
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of       .

For each of these designs, we drew 1,000 samples 
of 100 and 500 units.  When the MOS is       , the ppstrat 
design approximates optimal             selection and wtd 
bal       sampling.  It is similar to “deep stratification” 
(e.g., Bryant et al., 1960; Cochran, 1977, pp. 124-126; 
Sitter and Skinner, 1994), which is used in accounting ap-
plications (Batcher and Liu, 2002). More specific details 
on these designs are given in pages 66-67 of Valliant et 
al. (2000).

Strategies

The strategies we examined consisted of selecting a 
pilot study to get a preliminary estimate of     followed 
by a main sample or only selecting a main sample.  Both 
options were crossed with the possibility of round-
ing     or not.  Thus, our main comparisons concern four 
strategies:

A:  draw a               pilot of 50 units, estimate    , and 
select a main sample using                ,  ppstrat           , 
and wtd bal           samples.

B:  draw srswor,  ppswor          , ppstrat          , and wtd 
bal        main samples only and estimate     in 
each.

C:  strategy A, rounding       to the nearest one-half.
D:  strategy B,  rounding      to the nearest one-half.

By definition, there is no srswor used for strategies 
A and C. Also, B and D correspond to assuming                                          

Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 
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Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 
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which is ix , two important optimality results hold: (1) 
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are proportional to ix  (Särndal, Swensson, and 
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sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 
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3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
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3 / 4  population). 
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The first population has a relatively strong dependence 
between y  and x , while the second one has a much 
weaker relationship. Note that these populations have a 
small non-zero intercept, which resulted in some model-
based estimators being biased in the earlier HMT study. 

3. Simulation Setup 

This section describes the details of our simulation study, 
including working models, sample designs, simulation 
strategies, and the method of estimating .
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intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
( | )M i iE y x  is a linear combination of auxiliaries, one of 

which is ix , two important optimality results hold: (1) 
The selection probabilities that minimize the anticipated 
variance of the general regression (GREG) estimator 
are proportional to ix  (Särndal, Swensson, and 
Wretman 1992, sec. 12.2). (2) The optimal model-based 
sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
strategies: 
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By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
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does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
occurrences for the 3 / 4  population (there were less 
than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  
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main sample or only selecting a main sample.  Both 
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which are unrealistic. Table 1 shows the number of these 
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Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  
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population (there were none of these cases for the  

3 / 4  population). 

Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 

/ 2
1/ 2 1( | )M i i i iE y x x x

   iiiM xxyVar 2)|(  (3.3) 

Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
( | )M i iE y x  is a linear combination of auxiliaries, one of 

which is ix , two important optimality results hold: (1) 
The selection probabilities that minimize the anticipated 
variance of the general regression (GREG) estimator 
are proportional to ix  (Särndal, Swensson, and 
Wretman 1992, sec. 12.2). (2) The optimal model-based 
sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
strategies: 

A: draw a  pp )( x  pilot of 50 units, estimate , and 
select a main sample using pp ( ˆx ), ppstrat ( ˆx ),
and wtd bal ( ˆx ) samples. 
B: draw srswor,  ppswor )( x , ppstrat )( x , and wtd 
bal  ( x ) main samples only and estimate  in each. 
C: strategy A, rounding ˆ  to the nearest one-half. 
D: strategy B,  rounding ˆ  to the nearest one-half. 

By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
occurrences for the 3 / 4  population (there were less 
than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  

3 / 4  population). 

Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 

/ 2
1/ 2 1( | )M i i i iE y x x x

   iiiM xxyVar 2)|(  (3.3) 

Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
( | )M i iE y x  is a linear combination of auxiliaries, one of 

which is ix , two important optimality results hold: (1) 
The selection probabilities that minimize the anticipated 
variance of the general regression (GREG) estimator 
are proportional to ix  (Särndal, Swensson, and 
Wretman 1992, sec. 12.2). (2) The optimal model-based 
sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
strategies: 

A: draw a  pp )( x  pilot of 50 units, estimate , and 
select a main sample using pp ( ˆx ), ppstrat ( ˆx ),
and wtd bal ( ˆx ) samples. 
B: draw srswor,  ppswor )( x , ppstrat )( x , and wtd 
bal  ( x ) main samples only and estimate  in each. 
C: strategy A, rounding ˆ  to the nearest one-half. 
D: strategy B,  rounding ˆ  to the nearest one-half. 

By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 
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for selecting the ppswor, ppstrat, and wtd bal samples, 
which does not match our population    ’s, but will be 
a reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to 
see if reducing variability in the     ’s leads to improved 
estimates of totals and variances. 

Estimation of  

To estimate     , following Roshwalb (1987), we 
iteratively fit a given working model and regressed the 
log of the squared residuals on             as follows:

 

and repeated the process until     stabilized.

For all strategies, if           , then it was forced to  
one, which corresponds to              sampling. Rejected 
alternatives included forcing            , implying homosce-
dasticity, or dropping these samples, both of which are 
unrealistic. Table 1 shows the number of these occur-
rences for the                population (there were less than 
5 cases for each strategy for the            population). Also, 
for all strategies, if          ,  then it was forced to equal 
three to avoid unreasonably large    ’s.  Table 2 contains 
the number of these occurrences for the             population 
(there were none of these cases for the                 popu-
lation).

In Table 1, strategies A and B’s numbers are the num-
ber of negative    ’s.  For C and D, the numbers include 

cases where small positive    ’s were rounded down to 
zero.  The numbers in parentheses are the number of 
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Table 1—Number of Times ˆ 1 , 3/ 4  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

52
56
60

67
56
59

159 
164 
167 

171 
199 
181 

C
ppswor 
ppstrat 
wtd bal 

157 (18) 
129 (20) 
136 (24) 

134 (28) 
150 (25) 
142 (24) 

263 (98) 
256 (83) 
252 (63) 

243 (122) 
275 (114) 
267 (105) 

 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

8
16
11
12

0
0
0
0

68
93
81
92

3
5
5
3

D

srswor
ppswor 
ppstrat 
wtd bal 

43 (2) 
67 (2) 
53 (2) 
59 (2) 

0
0
0
0

158 (40) 
179 (52) 
191 (50) 
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30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2—Number of Times ˆ 3 , 2  Population 
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A
ppswor 
ppstrat 
wtd bal 
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81
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51
63

21
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28
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ppswor 
ppstrat 
wtd bal 
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32
27

46
36
32

9
8
14

6
8
10

 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

7
7
12
5

0
0
0
0

2
2
1
3

0
0
0
0

D

srswor
ppswor 
ppstrat 
wtd bal 

2
2
3
2

0
0
0
0

0
1
0
1

0
0
0
0

Estimation of Totals

We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators 
(GREG).  The HT estimator is given by

 
where       is the probability of selection for unit i.

The general form of the BLUP estimator is

  
where        is the prediction for    using the working 
model and set of units in the population that are not 

Model (3.1) is the correct working model, i.e., the one 
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Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
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samples using an MOS are selected that satisfy 
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An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
strategies: 

A: draw a  pp )( x  pilot of 50 units, estimate , and 
select a main sample using pp ( ˆx ), ppstrat ( ˆx ),
and wtd bal ( ˆx ) samples. 
B: draw srswor,  ppswor )( x , ppstrat )( x , and wtd 
bal  ( x ) main samples only and estimate  in each. 
C: strategy A, rounding ˆ  to the nearest one-half. 
D: strategy B,  rounding ˆ  to the nearest one-half. 

By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
occurrences for the 3 / 4  population (there were less 
than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  

3 / 4  population). 
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Table 1: Number of Times ˆ 1 , 3/ 4  Population

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

52
56
60

67
56
59

159 
164 
167 

171 
199 
181 

C
ppswor 
ppstrat 
wtd bal 

157 (18) 
129 (20) 
136 (24) 

134 (28) 
150 (25) 
142 (24) 

263 (98) 
256 (83) 
252 (63) 

243 (122) 
275 (114) 
267 (105) 

 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

8
16
11
12

0
0
0
0

68
93
81
92

3
5
5
3

D

srswor
ppswor 
ppstrat 
wtd bal 

43 (2) 
67 (2) 
53 (2) 
59 (2) 

0
0
0
0

158 (40) 
179 (52) 
191 (50) 
184 (52) 

30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81

73
51
63

21
22
28

21
18
24

C
ppswor 
ppstrat 
wtd bal 

39
32
27

46
36
32

9
8

14

6
8

10
 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

7
7

12
5

0
0
0
0

2
2
1
3

0
0
0
0

D

srswor
ppswor 
ppstrat 
wtd bal 

2
2
3
2

0
0
0
0

0
1
0
1

0
0
0
0

In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:

2
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1 i i i ii s i sT y n y

nn N
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 
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sample (denoted by i s ) and ˆ  is estimated using the 
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rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
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 The general form of the GREG estimator is 
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sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  
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where 1ˆ ( )-1 -1
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rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
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model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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on the strategy, there were at least three times as many  
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In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  
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Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 
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where 1ˆ ( )-1 -1
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rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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i ii s i s
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 

/ 2
1/ 2 1( | )M i i i iE y x x x

   iiiM xxyVar 2)|(  (3.3) 

Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
( | )M i iE y x  is a linear combination of auxiliaries, one of 

which is ix , two important optimality results hold: (1) 
The selection probabilities that minimize the anticipated 
variance of the general regression (GREG) estimator 
are proportional to ix  (Särndal, Swensson, and 
Wretman 1992, sec. 12.2). (2) The optimal model-based 
sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
strategies: 

A: draw a  pp )( x  pilot of 50 units, estimate , and 
select a main sample using pp ( ˆx ), ppstrat ( ˆx ),
and wtd bal ( ˆx ) samples. 
B: draw srswor,  ppswor )( x , ppstrat )( x , and wtd 
bal  ( x ) main samples only and estimate  in each. 
C: strategy A, rounding ˆ  to the nearest one-half. 
D: strategy B,  rounding ˆ  to the nearest one-half. 

By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
occurrences for the 3 / 4  population (there were less 
than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  

3 / 4  population). 
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in the sample (denoted by          ) and       is estimated 
using the sample units (         ). For example, following  
Valliant et al.’s (2000) notation, the BLUP using the 
correct model is

 

where                                                            matrix with 
rows                                              is the n-vector of 
sample data.

The general form of the GREG estimator is

where      is the “g-weight” for unit i (Särndal et al., 
1992).

These estimators combined with the two working 
models and true value of       and estimates of      lead to 
nine totals.  For model (3.1), we have                   and   
                        The estimators               
                                                                               and  
are                           for model (3.2).          is the ninth.  
Note that the true        is not available in any real situation; 
estimators computed using        serve as a comparison 
standard for the other choices.

Variance Estimation

For the HT estimator, the variance estimator is:

This variance expression assumes with replace-
ment sampling, but uses the finite population correction 
adjustment                to approximately account for wor 
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter, 1985, sec. 2.4.5).

The following is the basic model variance estimate 
for the BLUP estimators:

 

where       is the “model weight” involving       in the 
working model and        is the residual for unit i.

We also include a robust leverage-adjusted variance 
estimate for the BLUP’s:

where         is the leverage for unit i.  The identical second 
term in both model variances accounts for variability in 
population units not in the sample. 

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant, 2002, expression 2.4):

 

The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the HT 
and GREG estimators, where successive pairs of sample 
units were grouped, variances were calculated within 
each stratum, and strata variances were cumulated. Since 
both working models were specified over all strata, the 
model variance formulae          and         were used for 
samples selected using ppstrat sampling in estimating 
the variance of the BLUP.

	Simulation Results

Estimates
We calculated the average    over each set of 1,000 

samples drawn from both populations.  Results are only 
summarized here. 

When                     strategies B and D had more nearly 
unbiased estimates than A and C due to the smaller pilot 
sample sizes in the latter two.  The rounding in strate-
gies C and D made the average       further from the 
true value, since        close to three-fourths were either 
rounded down to one-half or up to one. 

When             the average        were closer to the 
true values.  There was not much difference between the 
average          for the pilot study strategies A and C versus 
the no-pilot strategies B and D.  The rounding also did 
not make much of a difference. Using the correct model 
(3.1) rather than (3.2) resulted in          closer to the true 
value, as might be expected.

Table 1: Number of Times ˆ 1 , 3/ 4  Population

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

52
56
60

67
56
59

159 
164 
167 

171 
199 
181 

C
ppswor 
ppstrat 
wtd bal 

157 (18) 
129 (20) 
136 (24) 

134 (28) 
150 (25) 
142 (24) 

263 (98) 
256 (83) 
252 (63) 

243 (122) 
275 (114) 
267 (105) 

 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

8
16
11
12

0
0
0
0

68
93
81
92

3
5
5
3

D

srswor
ppswor 
ppstrat 
wtd bal 

43 (2) 
67 (2) 
53 (2) 
59 (2) 

0
0
0
0

158 (40) 
179 (52) 
191 (50) 
184 (52) 

30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81

73
51
63

21
22
28

21
18
24

C
ppswor 
ppstrat 
wtd bal 

39
32
27

46
36
32

9
8

14

6
8

10
 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

7
7

12
5

0
0
0
0

2
2
1
3

0
0
0
0

D

srswor
ppswor 
ppstrat 
wtd bal 

2
2
3
2

0
0
0
0

0
1
0
1

0
0
0
0

In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:

2
0

ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y

nn N
n

.

This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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3
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43 (2) 
67 (2) 
53 (2) 
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158 (40) 
179 (52) 
191 (50) 
184 (52) 
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Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81
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21
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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D leads to fewer negative estimates than in A and B, 
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Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
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model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).
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sample data. 
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where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:

2
0

ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y

nn N
n

.

This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  
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sample data. 
 The general form of the GREG estimator is 
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where ig  is the “g-weight” for unit i (Särndal et. al,
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These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
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For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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to pilot samples of size 50 in A and C.  Also, depending 
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large ˆ ’s. There were at least twice as many large ˆ ’s 
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(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 
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sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 
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where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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D leads to fewer negative estimates than in A and B, 
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Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  
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We consider three kinds of estimators for totals: the 
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predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 
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where ˆ
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sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 
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where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
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model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:

2
0

ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y

nn N
n

.

This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 

2 2

3 2
ˆvar ( ) 1 i i
GR i s

i

n g rT
N

2 2

4 2
ˆvar ( ) 1

(1 )
i i

GR i s
i ii

n g rT
N h

.

The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 

12 2 2
1

ˆvar ( ) i i ii s i s i s i si iT a r x x r ,

where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  
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Our primary focus is how estimating        effects 
estimates of totals and their variances.  Tables 5 and 6 at 
the end of this paper include the root mean square error 
(RMSE) and 95-percent confidence interval (CI) cover-
age of each of the nine total estimators based on samples 
of size 100 drawn from the                                  popula-
tions, respectively (similar generalizations held for the 
samples of size 500, which are omitted due to length).  
Both tables are organized such that the HT estimates are 
first, followed by the BLUP and GREG totals produced 
using the true       value (which resulted in identical results 
for strategies B and D), then those that used        Rela-
tive biases (Relbias) are not shown in the tables but are 
briefly mentioned below.  

For the             population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value 
was -0.41 percent for                        using strategy B 
and wtd bal           samples.  For all strategies, using the 
correct working model (2.1) versus model (3.2) resulted 
in lower Relbias and RMSE values and CI coverage 
closer to 95 percent, though differences are not drastic.  
With model (3.2), using the GREG estimator resulted in 
improvements in all three measures over the equivalent 
BLUP estimators.  Comparing strategies, there are slight 
improvements in the Relbias, RMSE, and CI coverage of 
strategy B over A and D over C, so that using the small 
pilot studies does not lead to any improvements.  While 
the rounding of the pilot        in C offers improvements 
in the measures over A’s, that is not the case in strate-
gies B and D. For the sample designs, results from the 
ppstrat samples seem to be most favorable.  For these 
populations, wtd bal sampling based on          in the main 
sample for Strategy B is suboptimal since the variance 
of neither population is proportional to x.  Nonetheless, 
ppstrat              is still reasonably efficient.  As expected in 
these types of populations, the RMSE’s when sampling 
by srswor are uniformly worse than those for the other 
designs in strategies B and D.

For the         population, which had a total of 
14,304.74, the largest Relbias value was 1.29 percent.  
Again, using the correct working model led to improved 
results, in terms of lower Relbias and RMSE values and 

CI coverage closer to 95 percent; there are slight gains 
in using the GREG estimator with model (3.2).  Here, 
there is a notable (but not drastic) drop in the overall CI 
coverages compared to the                   population, the 
lowest being 91.7 percent.  The most striking difference 
in RMSE values are the gains achieved with the pilot 
strategies over the corresponding nonpilot ones.  For  
example ,  t he  RMSE fo r  t he  combina t i on                          
               A, ppstrat) is 1,186.76, while the RMSE 
for                     B, ppstrat) is 1,289.02.  That is, using 
a pilot leads to an RMSE that is about 92.1 percent of 
that of using no pilot.

Figure 2 on the following page displays the ratios for 
the            population of RMSE’s of the various estima-
tors and sampling plans to the RMSE of the combina-
tion of                     B, ppstrat, with estimated     for n 
= 100.  This combination was selected as the reference 
since (a) ppstrat is a popular plan in practice, and (b) 
the GREG estimator                    is one that is used by 
conservative practitioners because it is approximately 
design-unbiased while still taking advantage of the y-x 
relationship.  The left and right panels show the ratios 
for estimators that use the true     and an estimated    .  
When the true gamma is used in estimation, but a pilot 
study is conducted to determine how to select the main 
sample, the most efficient method of sampling is ppstrat.  
In the (ppstrat, pilot) case, all estimators have about the 
same RMSE.

The right-hand panel gives the more realistic com-
parisons among combinations that could be used in 
practice.  Conducting a pilot study with strategy A (no 
rounding) followed by a ppstrat           main sample 
yielded a 4- to 8-percent reduction in RMSE compared 
to the reference combination described above.  Round-
ing in strategy C reduces the gains from doing a pilot.  
Weighted balance on an estimated      has no advantage 
over the reference combination.

If no pilot is conducted (strategies B and D), then 
wtd bal           is the most efficient scheme, but ppstrat          
 is very competitive.  The rounding in strategy 
D leads to virtually the same results as B.  Among the 
estimators, the model-based choice                       and 
the GREG                           are somewhat worse than the 
others, although differences are not extreme. 

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 

2 2
1 2

2
ˆvar ( )

1
i i

i i ii s i s i s i s
ii

a r
T x x r

h
,

where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.
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variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

while the RMSE for  ( ˆˆ (1,1 : )GRT x , B, ppstrat) is 
1,289.02.  That is, using a pilot leads to an RMSE that 
is about 92.1% of that of using no pilot. 

Figure 2 on the following page displays the ratios 
for the 2  population of RMSE’s of the various 
estimators and sampling plans to the RMSE of the 
combination of ˆˆ (1,1 : )GRT x , B, ppstrat, with estimated 

 for n = 100.  This combination was selected as the 
reference since (a) ppstrat is a popular plan in practice, 
and (b) the GREG estimator ˆˆ (1,1 : )GRT x is one that is 
used by conservative practitioners because it is 
approximately design-unbiased while still taking 
advantage of the y-x relationship.  The left and right 
panels show the ratios for estimators that use the true 
and an estimated .  When the true gamma in used in 
estimation, but a pilot study is conducted to determine 
how to select the main sample, the most efficient 
method of sampling is ppstrat.  In the (ppstrat, pilot) 
case, all estimators have about the same RMSE. 

The right-hand panel gives the more realistic 
comparisons among combinations that could be used in 
practice.  Conducting a pilot study with strategy A (no 
rounding) followed by a ppstrat ( ˆx ) main sample 
yielded a 4 to 8% reduction in RMSE compared to the 
reference combination described above.  Rounding in 
strategy C reduces the gains from doing a pilot.  
Weighted balance on an estimated  has no advantage 
over the reference combination. 

If no pilot is conducted (strategies B and D), then 
wtd bal ( x ) is the most efficient scheme, but ppstrat 
( x ) is very competitive.  The rounding in strategy D 
leads to virtually the same results as B.  Among the 
estimators, the model-based choice ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  and 
the GREG ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are somewhat worse than 
the others, although differences are not extreme.  

In all cases, unrestricted ppswor sampling was the 
poorest performer, regardless of whether  was known 
or estimated. 

5. General Conclusions, Limitations, and Future 
Considerations 

We investigated some alternative strategies for 
sampling and estimation in populations where there is 
one target variable y, whose total is to be estimated, and 
one auxiliary x, which is known for every unit in the 
population.  The variance of y is known to increase as x
increases, but the exact form of the variance is 
unknown to the sampler. Modeling the variance as 

iiiM xxyVar 2)|(  is assumed to be a good  

approximation to reality. We studied three options that 
might be considered for this type of problem: design of a 
pilot sample, design of a main sample, and selection of an 
estimator. 
 We obtained ambiguous results on whether a pilot 
study, designed to get a preliminary estimate of , would 
be worthwhile. For our versions of the HMT population, 
the smaller pilot studies gave more negative ˆ ’s and 
more biased ones on average.  In the less variable 
population we studied, conducting a pilot did not 
consistently give lower root mean square errors for the 
totals than using only a main sample with an educated 
guess about the size of .  Rounding ˆ  to the nearest 
half was not particularly helpful or harmful in estimating 
totals.  Small root mean square error improvements came 
from reducing the variability in the ˆ ’s, in strategies C 
and D, for the less variable population ( 3 / 4 ), but the 
opposite was true in the more variable population 
( 2 ). Thus, when the focus is on estimating , a pilot 
study and rounding are not useful.  But, if the focus is on 
estimating totals, a pilot, possibly with rounding, may 
offer slight MSE improvements, depending on the 
population variability. 

Among the sampling plans we considered, 
stratification based on cumulative ˆx  or x  rules, 
denoted ppstrat here, were both reasonably efficient. The 
use of wtd bal samples based on ˆ ’s was not effective in 
reducing the root mean square errors of totals.   

A good overall strategy for this type of problem 
appears to be the following.  Select a highly restricted 
probability proportional to x .  This can be 
accomplished using the cum ( x ) rule with one or two 
units selected per stratum.  Estimate the total with either a 
BLUP or a GREG estimator based on a reasonable model 
for the population at hand.  Model (3.2), though incorrect, 
still fit the data fairly well in the cases we examined.  This 
general approach is similar to ones used by some 
accounting firms that conduct cost segregation studies. 

Any simulation study is, of course, limited.  
Populations that are less well-behaved than HMT may 
yield different results. Accounting populations, in 
particular, often have units with extreme values that need 
special treatment both when estimating ˆ  and the 
population total. 

Some future considerations could include variations 
on the sample size.  Brewer (2002) suggests 1,000 as the 
minimum for estimating gamma with “any reasonable 
amount of precision.” However, in accounting 
applications, the real interest is on performance in small 
samples.  Pilots of n = 10 and main studies of n = 50, or 
even less, are typical.  In such cases, weighted balanced 
samples and model-based estimators may have 
advantages. 

while the RMSE for  ( ˆˆ (1,1 : )GRT x , B, ppstrat) is 
1,289.02.  That is, using a pilot leads to an RMSE that 
is about 92.1% of that of using no pilot. 

Figure 2 on the following page displays the ratios 
for the 2  population of RMSE’s of the various 
estimators and sampling plans to the RMSE of the 
combination of ˆˆ (1,1 : )GRT x , B, ppstrat, with estimated 

 for n = 100.  This combination was selected as the 
reference since (a) ppstrat is a popular plan in practice, 
and (b) the GREG estimator ˆˆ (1,1 : )GRT x is one that is 
used by conservative practitioners because it is 
approximately design-unbiased while still taking 
advantage of the y-x relationship.  The left and right 
panels show the ratios for estimators that use the true 
and an estimated .  When the true gamma in used in 
estimation, but a pilot study is conducted to determine 
how to select the main sample, the most efficient 
method of sampling is ppstrat.  In the (ppstrat, pilot) 
case, all estimators have about the same RMSE. 

The right-hand panel gives the more realistic 
comparisons among combinations that could be used in 
practice.  Conducting a pilot study with strategy A (no 
rounding) followed by a ppstrat ( ˆx ) main sample 
yielded a 4 to 8% reduction in RMSE compared to the 
reference combination described above.  Rounding in 
strategy C reduces the gains from doing a pilot.  
Weighted balance on an estimated  has no advantage 
over the reference combination. 

If no pilot is conducted (strategies B and D), then 
wtd bal ( x ) is the most efficient scheme, but ppstrat 
( x ) is very competitive.  The rounding in strategy D 
leads to virtually the same results as B.  Among the 
estimators, the model-based choice ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  and 
the GREG ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are somewhat worse than 
the others, although differences are not extreme.  

In all cases, unrestricted ppswor sampling was the 
poorest performer, regardless of whether  was known 
or estimated. 

5. General Conclusions, Limitations, and Future 
Considerations 

We investigated some alternative strategies for 
sampling and estimation in populations where there is 
one target variable y, whose total is to be estimated, and 
one auxiliary x, which is known for every unit in the 
population.  The variance of y is known to increase as x
increases, but the exact form of the variance is 
unknown to the sampler. Modeling the variance as 
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approximation to reality. We studied three options that 
might be considered for this type of problem: design of a 
pilot sample, design of a main sample, and selection of an 
estimator. 
 We obtained ambiguous results on whether a pilot 
study, designed to get a preliminary estimate of , would 
be worthwhile. For our versions of the HMT population, 
the smaller pilot studies gave more negative ˆ ’s and 
more biased ones on average.  In the less variable 
population we studied, conducting a pilot did not 
consistently give lower root mean square errors for the 
totals than using only a main sample with an educated 
guess about the size of .  Rounding ˆ  to the nearest 
half was not particularly helpful or harmful in estimating 
totals.  Small root mean square error improvements came 
from reducing the variability in the ˆ ’s, in strategies C 
and D, for the less variable population ( 3 / 4 ), but the 
opposite was true in the more variable population 
( 2 ). Thus, when the focus is on estimating , a pilot 
study and rounding are not useful.  But, if the focus is on 
estimating totals, a pilot, possibly with rounding, may 
offer slight MSE improvements, depending on the 
population variability. 

Among the sampling plans we considered, 
stratification based on cumulative ˆx  or x  rules, 
denoted ppstrat here, were both reasonably efficient. The 
use of wtd bal samples based on ˆ ’s was not effective in 
reducing the root mean square errors of totals.   

A good overall strategy for this type of problem 
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A good overall strategy for this type of problem ap-
pears to be the following.  Select a highly restricted prob-
ability proportional to           This can be accomplished 
using the cum           rule with one or two units selected 
per stratum.  Estimate the total with either a BLUP or 
a GREG estimator based on a reasonable model for the 
population at hand.  Model (3.2), though incorrect, still 
fit the data fairly well in the cases we examined.  This 
general approach is similar to ones used by some ac-
counting firms that conduct cost segregation studies.

Any simulation study is, of course, limited.  Popula-
tions that are less well-behaved than HMT may yield dif-
ferent results. Accounting populations, in particular, often 
have units with extreme values that need special treatment 
both when estimating     and the population total.

Some future considerations could include variations 
on the sample size.  Brewer (2002) suggests 1,000 as 
the minimum for estimating gamma with “any reason-
able amount of precision.” However, in accounting ap-
plications, the real interest is on performance in small 
samples.  Pilots of n = 10 and main studies of n = 50, 
or even less, are typical.  In such cases, weighted bal-
anced samples and model-based estimators may have 
advantages.
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population.  The variance of y is known to increase as x
increases, but the exact form of the variance is 
unknown to the sampler. Modeling the variance as 

iiiM xxyVar 2)|(  is assumed to be a good  

approximation to reality. We studied three options that 
might be considered for this type of problem: design of a 
pilot sample, design of a main sample, and selection of an 
estimator. 
 We obtained ambiguous results on whether a pilot 
study, designed to get a preliminary estimate of , would 
be worthwhile. For our versions of the HMT population, 
the smaller pilot studies gave more negative ˆ ’s and 
more biased ones on average.  In the less variable 
population we studied, conducting a pilot did not 
consistently give lower root mean square errors for the 
totals than using only a main sample with an educated 
guess about the size of .  Rounding ˆ  to the nearest 
half was not particularly helpful or harmful in estimating 
totals.  Small root mean square error improvements came 
from reducing the variability in the ˆ ’s, in strategies C 
and D, for the less variable population ( 3 / 4 ), but the 
opposite was true in the more variable population 
( 2 ). Thus, when the focus is on estimating , a pilot 
study and rounding are not useful.  But, if the focus is on 
estimating totals, a pilot, possibly with rounding, may 
offer slight MSE improvements, depending on the 
population variability. 

Among the sampling plans we considered, 
stratification based on cumulative ˆx  or x  rules, 
denoted ppstrat here, were both reasonably efficient. The 
use of wtd bal samples based on ˆ ’s was not effective in 
reducing the root mean square errors of totals.   

A good overall strategy for this type of problem 
appears to be the following.  Select a highly restricted 
probability proportional to x .  This can be 
accomplished using the cum ( x ) rule with one or two 
units selected per stratum.  Estimate the total with either a 
BLUP or a GREG estimator based on a reasonable model 
for the population at hand.  Model (3.2), though incorrect, 
still fit the data fairly well in the cases we examined.  This 
general approach is similar to ones used by some 
accounting firms that conduct cost segregation studies. 

Any simulation study is, of course, limited.  
Populations that are less well-behaved than HMT may 
yield different results. Accounting populations, in 
particular, often have units with extreme values that need 
special treatment both when estimating ˆ  and the 
population total. 

Some future considerations could include variations 
on the sample size.  Brewer (2002) suggests 1,000 as the 
minimum for estimating gamma with “any reasonable 
amount of precision.” However, in accounting 
applications, the real interest is on performance in small 
samples.  Pilots of n = 10 and main studies of n = 50, or 
even less, are typical.  In such cases, weighted balanced 
samples and model-based estimators may have 
advantages. 
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